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On the stochastic quantisation of Yang-Mills field theory 
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28040-Madrid, Spain 

Received 12 July 1985, in final form 30 December 1985 

Abstract. A new functional approach to the stochastic quantisation of continuum Euclidean 
Yang-Mills field theory is presented. Non-negative integral representations for the non- 
equilibrium and equilibrium probability distributions are given. A new dynamical generat- 
ing function is proposed and its equilibrium limit is obtained. The new dynamical Feynman 
rules for the generating function are derived and the superficial renormalisability of the 
theory is studied. Euclidean volume divergences appear. The cancellations of the latter 
for any Euclidean dimension d, and, for d = 4, that of all quartic ultraviolet divergences, 
are carried out. 

1. Introduction 

The standard covariant quantisation of Yang-Mills ( Y M )  gauge field theory in the path 
integral approach is based upon the introduction of a gauge fixing term which leads 
to the Faddeev-Popov ghosts [ l ]  (see also, for example, [2]). However, for suitably 
large gauge fields, the gauge-fixing term is not sufficient either to fix the gauge uniquely 
or to ensure that the (integrand of the) resulting path integral be non-negative (at least 
for Euclidean fields). This ambiguity was suggested by Gribov [3] and, since then, 
analysed by several authors [4]. In 1981, Parisi and Wu [5] proposed an alternative 
procedure (called later stochastic quantisation) for quantising Euclidean field theories, 
including the non-Abelian YM gauge one. Originally, they introduced an artificial fifth 
time coordinate, t, in addition to the usual four Euclidean variables and assumed the 
system to evolve according to stochastic differential equations, i.e. Langevin equations 
with an external Gaussian white noise or, equivalently, Fokker-Planck equations for 
the probability density of field configurations at a given time t (for an introduction to 
stochastic differential equations, see, for example [6]). Since then, the subject of 
stochastic quantisation of Euclidean field theory has evolved in different directions 
[7]. We refer to [8] for an updated review. Further contributions to the stochastic 
quantisation of the continuum Euclidean non-Abelian YM field theory [9- 121 will be 
summarised in § 2. 

On the other hand, there is a wide knowledge of stochastic differential equations 
and related functional methods coming from critical dynamics in statistical physics 

In this paper, we shall present a new functional approach to stochastic quantisation 
of the continuum Euclidean YM theory which completely incorporates previous work 
in non-equilibrium statistical dynamics [ 14-16]. In § 3, we shall give interesting 
functional integrals for the non-equilibrium and equilibrium distributions. 

[ 13- 161. 
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Section 4 will present a dynamical generating function for the stochastically quan- 
tised YM field theory and some analysis of its equilibrium (or static) limit, and of 
correlation functions, by using the path integral discussed in 4 3. Euclidean volume 
divergences will appear in the dynamical generating function. Recently there have 
been several contributions to the functional formulation of stochastic quantisation [ 171 
but, to our knowledge, they are all limited to Abelian gauge theories. 

In 4 5, we shall use the dynamical generating function in order to derive the 
dynamical (or stochastic) Feynman rules. Through a power counting analysis, we shall 
study the superficial degree of divergence and renormalisability of the set of all 
dynamical Feynman diagrams in Euclidean dimension d = 4, and point out the existence 
of quartic ultraviolet divergences in some diagrams. In 0 6 we shall study the possibility 
of cancelling (i)  the Euclidean volume divergences for any d,  as well as (ii) the quartic 
ultraviolet divergences for d = 4. 

Finally, the conclusions are given. 

2. Stochastic quantisation of the Euclidean Yang-Mills field: a summary 

We shall consider the stochastic quantisation of the continuum Euclidean non-Abelian 
YM real gauge field A: = A:(x ,  t )  where the Euclidean vectorx = ( x , )  has d components 
(including the usual time coordinate, which has now become another Euclidean 
component), p (  = 1 . . . d )  is a Lorentz index, a is a colour index and t is an artificial 
time parameter. According to [5,9-121, stochastic quantisation of the YM field is based 
upon the Langevin equation 

aA;(x,  t ) l a r  = -YOA:,(X, t )  + Y ~ ( x ,  t )  (2.1) 

FZY= F;,,(x, t)=a,A”,da.A~+gofab‘A~A‘, 
(2.3) 

D ; ~  = D ; ~ ( x ,  t )  = a,Pb -go f abcAfi 
(a,=:) 

where S and Dib are the standard Euclidean YM action and covariant derivative, 
respectively, and V b  = V b ( A ,  x )  is an arbitrary gauge non-invariant (gauge-fixing) 
functional of x and A : .  The constants f and go are the SU( N )  structure constants 
and the gauge coupling constant, respectively. y ; ( x ,  t )  is a Gaussian fluctuating force 
with zero average and such that the correlation of y ; (x ,  t )  and y ! ( x ’ ,  t’) equals 
2 y o S “ b S f i v 8 ( d ) ( ~  - x’)S( t - t ’ ) ,  yo (the diffusion coefficient) being the same constant 
which appears in equation (2.1). Standard summation conventions for repeated indices 
will be used throughout. Equivalently, the stochastic quantisation of the Euclidean 
YM theory can also be based upon the following Fokker-Planck equation for the 
probability distribution P V [ A ,  t ]  [5,9-121: 
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The relationship and equivalence between the Langevin and Fokker-Planck formula- 
tions in stochastic theory, with wide generality, are well documented (see, for example 
[6,14l. 

The following properties turn out to play a fundamental role in the stochastic 
quantisation of the YM field and  its subsequent physical interpretation. 

(1) For any V such that D”,” V b  # 0, the solution PV[A, t]  of equation (2.4) corre- 
sponding to an arbitrarily given initial condition Po[A] at t = to relaxes as t + +a to 
a well defined equilibrium distribution Pv,es[A] = lim,,,, PV[A, t]. Moreover, 
Pv,eq[A] is (i) independent of Po[A], (ii) does depend on V, (iii) satisfies 

LvPv,e,[Al = 0 ( 2 . 5 )  

and (iv) for given V, it is unique. These properties were studied in [9-111. 
( 2 )  Let F[A]  be a generic gauge-invariant function of A;, i.e. D:bGF[A]/SA:(x) = 

0. Since A; = A;(xt) evolves with t according to the V-dependent Langevin equation 
(2.1), F[A]  also varies with t ,  but dF/d t  turns out to be independent of V [ l l ] .  The 
average value of such a gauge-invariant function is given by the functional integral 

( F )  = [dAlF[AlPv[A, 11 (2.6) 

where [dA] = N Il x , + o  dA”,x) is the usual differential (‘volume’) element correspond- 
ing to the continuous set formed by all A;(x) for any x, p, at a given (artificial) time 
t, while N is a suitable normalising factor. Then, as also discussed in [9-111, for any 
given initial condition Po[A] at t = t o ,  ( i )  ( d / d t ) ( F )  is independent of V, in to< t < +a 
and (ii) l im,++=(F) exists, is independent of Po[A] and V and coincides with the 
average value of F given by by the Euclidean YM theory quantised by means of the 
well known Faddeev-Popov procedure, namely 

I 

lim ( F ) =  [dA]FIAIPv,.,[A] = [dA]FIAIPFp[Al.  (2.7) 
,-+cc I 5 

We recall that the Faddeev-Popov distribution is 

PFp[A]= [dc dE]exp[-(S+SGF)] 5 
where S is given by equation (2.2), c and  E are the usual ghost and antighost fields, 
[dc dE] is the standard ‘volume’ element for them (which may include a normalisation 
factor) and 

SGF= ddx{(2ao)- ’ (d ,A;) (d .A”, )S  [d,E”][D,46cb]). (2.9) 5 
3. Path integrals 

By generalising previous work by other authors [6,14], the solution PJA, t ]  of the 
Fokker-Planck equation (2.4) in t > to which is determined by the initial value Po[A] 
at t = to can be cast as the functional integral 

(3.1) 
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where, in turn, the conditional probability distribution Qv can be expressed through 
the path integral 

1 aA" 
Qv[At; A't,] = 5 [DAI exp { - 5' 10 dt '  5 ddx[-  YO (-$+ yoA:,) 

1 s  (%+ Y o A E ~ ) ] }  
aA; 
(at" yoA'p) -2 sAZ(x, t ' )  a t '  

IDA1 = fl [dA(t')l AE(x, to) = AF(x)  AE(x, t )  = AE(x). (3.3) 

Notice that [dA(t')] is a differential element at a given time t'  which is similar to the 
one appearing in equations (2.6) and (2.7). 

Property ( l ) ,  summarised in Q 2, ensures that, after an infinitely long time interval 
has elapsed, all memory effects become lost and the solution of the Fokker-Planck 
equation relaxes to the equilibrium distribution, P V,es. This fact, together with equation 
(3.2) gives the path integral representation for Pv,eq[A]: 

with AE(x, t )  = A;(x) for any fixed t and any initial configuration AE(x, t ' +  -CO)  = 
A'"(x) at to= t '+  -CO. 

Notice that for real V, equation (3.4) gives a representation for the equilibrium 
distribution of the Euclidean Y M  field which is non-negative for an A and, hence, it 
provides a whole family of interesting alternatives with respect to the Faddeev-Popov 
distribution, which, in particular, could be useful for a non-perturbative analysis. See 
also the discussion in [9,10, 121. For fixed to and t + +CO, equation (3.2) yields, through 
a similar argument 

for any Ai(x,  to) = A r ( x )  at any fixed to. Thefinal field configuration is AE(x, t '+  + 
CO) = A:(x). 

4. Dynamical generating functions 

We recall that the equilibrium generating function and the normalisation constant Neq 
are defined as 

. -  
where j =j:(x) is a t-independent external current. A study of ZV,,,[j] and of its 
perturbation expansion when V" = a;'d,A;, based upon equation (2.5), was given by 
Floratos et a1 [12]. 
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We shall introduce the following dynamical generating function related to the 
Fokker-Planck equation (2.4): 

where J = J i ( x ,  t )  is a t-dependent external current, [ D A ]  = II:=”_, [dA( t ) ]  and the 
normalisation constant N fulfils 

(4.3) ZV[J = 01 = 1 .  

The term 

exp 1” dt  1 ddx 

on the right-hand side of equation (4.2) does not contribute to the path integral and 
can be safely absorbed into the normalisation constant. 

This dynamical generating function turns out to be the direct generalisation for the 
actual YM field case of the one considered in [ 1 5 ]  for the critical dynamics of 
mode-coupling systems (helium, antiferromagnets, liquid-gas systems). Let us consider 
equation ( 1 . 8 )  in [ 151 and perfory the Gaussian functional integration over the auxiliary 
Martin-Siggia-Rose [18] field I$~ conjugate to 4,. Then the direct generalisation of 
the resulting functional integral for the generating functional 2 { I }  in [ 1 5 ]  to the YM 
case is just equation (4.2). We could introduce auxiliary Martin-Siggia-Rose gauge 
fields A i  conjugate to A; here as well. In short, their use would allow us, in a 
perturbation theory framework, to treat vertices having a relatively simple structure ,at 
the expense of having to deal with relatively complicated propagators related to A; 
and A i .  After some calculational attempts, we have preferred not to consider auxiliary 
fields for the time being but to work exclusively with the original real gauge field A; 
throughout this work, since, at the price of somewhat complicated vertices, we can 
restrict ourselves to treat just one kind of propagator and vertex function, namely those 
for the (unique) field A i .  

Let 

J i ( x ,  t )  = j ( x ) W t )  or J = j S  (4.4) 

symbolically, where J and j are the external currents which appear in equations (4.2) 
and (4.1). Then one has the following property which relates the dynamical generating 
functional Z ,  to the equilibrium one: 

Z J J  = j S l  = z v , , , [ j l .  (4.5) 

Equation (4.5) can be proved as follows. By assuming equation (4.4) and recalling 
(3.2), equation (4.2) becomes 

Zv[J =jS] = N [dA(O)] exp ( [ d d x  j ; ( x ) A i ( x ,  O))Qv[A”, t = +CO; A(O), t o = O ]  I 
x Qv[A(O) ,  t = 0;  A’, t b  = -CO] (4.6) 
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where AE(x)  = AE(x, tb-, -00) and AY(x)  = AY(x, If+ +CO). By recalling equations 
(3.4) and (3.5) with N,= PV,eq[A’’], one finds 

By performing the change of notation A;(x, 0) = A;((x) and noticing that the resulting 
normalisation constant NNL is such that the right-hand side of equation (4.7) equals 
unity whenj = 0, its left-hand side does as well by virtue of equation (4.3), one completes 
the proof of equation (4.5). 

The ‘two-point’ correlation function for the gauge field is by generalising properties 
which are well known in stochastic theory (for instance, compare with sections 6.3-6.6 
in [61), 

(A:(xi, ti)Ab,(xz, t2)) = EdAl[dA’1A~(xi)A’yb(x,)(8(t, - 12) I 
x Q V C 4  t l ;  A‘, t>lPv,eq[A’I+ e(t2- tl)QV[A’, t2; A, tlIPv,eq[Al) (4.8) 

8 being the usual step function: e( t)  = l(0) for t > O( t < 0). One has the representations 

(4.9) 

In fact, by differentiating equation (4.2) functionally, one gets ( t l  7 t2, for definiteness) 

x Qv[A”, t = +WO; A(tl) ,  tllQVEA(tl), t l ;  A’(t21, t2l 

x Qv[A’( tz), t2; A”’, t ’ =  -001 (4.10) 

where A” and A“’ are the gauge field configurations at t + + 00 and t + -00, respectively. 
Equation (4.10) leads to (4.9), by recalling equations (3.4) and (3.5) through arguments 
similar to those used in connection with equations (4.6) in order to establish equation 
(4.5). In particular, for t l  = t2 = t, the equal-time or equilibrium correlation function 
fulfils, by virtue of equations (4.5) and (4.9), 

(4.1 1) 

5. Feynman rules from the dynamical generating functions 

5.1. Free dynamical generating function 

In what follows, we shall assume the same gauge-fixing functional as in [9] and [ 121, 
namely 

V” =d,A:/ao. (5.1) 



On the stochastic quantisation of Yang- Mills jield theory 739 

We shall introduce the free dynamical generating function 

1 aA;aA; yo 
z V , , [ J ]  = W O ’  I [ D A ]  exp { J-y dt I ddx( J;A; -- - - - - A ~  4 V . O , ~ t > O ,  

4Yo a t  a t  
(5.2) 

AC,O,=-AA;+(l- l/ao)a,(a,At) AA; = (a2/ax, ax,)A; (5.3) 

the normalisation constant N‘O’ being such that ZV,,[O] = 1. Z , , [ J ]  can be obtained 
from Zv, [J] by (i) replacing A t ,  by -AAL+d,(a,At), (ii) omitting the term ;yo, 
SA”,/SA: and (iii) accepting that the remaining contribution in the exponential inside 
the path integral, namely 

-L 2Yo I+w --a: dt’ ddx$ y o [  -AA:+( 1 --!-)a,(a~i:)] 

= -[ SV,$( t’ = +CO) - s“,o( t’ = - C O ) ]  

can be dropped, where (A: = A;(xt’)) 

By performing the Gaussian integration over A; through standard techniques [2], 
equation (5.2) becomes, after some algebra, 

ZV,O[JI = exp (f I dtl  I dt2 I ddx, ddx2J;(xl, tJG$(x, -x2,  t l  - t2)J;(x2, t 2 ) )  

G$( k, U )  = 1-y dt  1 ddx G$(x, t )  exp [ - i(kx -ut)]  

+m +oc 

--a: --a: 

(5.4) 

ab [ ~ ~ + y & ~ , ~ ( k ~ ) ~ ] S , , + ~ i ( l  - a i 2 ) k 2 k , k ,  
= 2 yo6 

[ w 2 +  y ; ( k 2 ) ’ ] [ w 2 +  y i a i 2 ( k 2 ) 2 ]  ( 5 . 5 )  

As a consistency check of our formalism and, in particular, of equation (4.5) we 
consider equation (5.4) for the special external current given in (4.4). Then (5.4) 
becomes 

Z , , [ J  = jS] = exp f ddxl ddx2 j:(xl)G;tfiv(x, -x,)j”,x,) ) (5.6) (I 
(5.7) 

where equation ( 5 . 5 )  has been used and a residue integration has been performed. 
The right-hand side of equation (5.6) is the free (equilibrium) generating function for 
the Abelian (go = 0) and Euclidean gauge field with Euclidean propagator given by 
equation (5.7): compare with [2]. 

A posteriori, one also realises the interest (the necessity !) of having introduced a 
non-vanishing gauge-fixing function V in equations (2.1), (2.2) and (2.4). In fact, by 
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letting cro> CO in the specific choice (5.1), one would be faced with a divergent result 
in equation (5.7) ! 

5.2. Feynman rules 

The perturbation expansions of the dynamical generating functions in equations (4.2) 
and (4.3) are obtained as power series in go through standard techniques [2] by using 
the formal relation 

J I  6 
Zv[J] = exp ( - d t  [ ddxlP,,.,[ Ai(x,  t )  + 

-cc SJi(X, 2 )  

A careful study of the perturbative series generated by equations (5 .8 ) ,  (5 .9 ) ,  (5.4) and 
(4.10) for correlation functions show that, up to and including order g; ,  the Feynman 
rules in ( k ,  w)-space reduce to considering just one line corresponding to the propagator 
in equation (5 .5 )  and the vertices drawn in figure 1 for an arbitrary gauge parameter 
(yo. The rules are as follows. 

(i) If an arrow of a line in figure 1 is to be reversed, the signs of the frequency 
and momentum associated with that line are to be changed. 

(ii) As can be seen in figure 1, the contribution associated with vertex I depends 
on just two of the momenta of the four external legs. The crosses over the lines attached 
to the vertices in figure 1 indicate that a crossed leg with momentum k contributes 
with a factor like [ ( l  - 1/cro)kv6Ap -2k,6,,+ kASFV], v, p being the Lorentz indices of 
the crossed line and of one of the other uncrossed lines, respectively, and A is a dummy 
summation index. 

(iii) The small circle over one of the lines in vertices I1 and 111 in figure 1 indicate 
that the contributions associated with those vertices depend precisely on the frequency 
w and momentum k of the circled line through a factor [( -iw+yok2)6,,- 
yok,k,( 1 - l / a O ) ]  where p is the Lorentz index of the circled line and p is a dummy 
summation index. 

(iv) Include a global factor l/n ! where n is the number of vertices. 
(v) The contribution associated with any vertex in figure 1 is to be multiplied by 

( 2 ~ ) ~ + '  S(Z (frequencies)) S ( d )  (Z (wavevectors)). Here, I: (frequencies) (I: (wavevec- 
tors)) stand for the sum of all frequencies (wavevectors) corresponding to all lines 
ending at the vertex. 

(vi) As usual, internal lines with frequency w and wavevector k are to be integrated 
with j+Z(dw/27r) (ddk/(27r)". All these lead to extract a factor ( 2 ~ ) - ~ - '  times a 
(d  + 1 )-dimensional 6 function expressing the total frequency-momentum con- 
servation. 

(vii) The vertices in figure 1 containing the 'Euclidean volume' divergence S'd'(0) 
comes precisely from the term (yo/2)6A",/6A~ in both equations (5.9) and (5.10). 
Notice that S,, = d. 

(viii) No use of symmetry factory is needed here as we have not symmetrised the 
vertices. It is, then, necessary to carefully count the number of equivalent ways of 
drawing a particular graph. The complexity of dealing with crosses and bubbles and 
counting equivalent diagrams disappears when the vertices are symmetrised. However, 
it is easier to show with the present Feynman rules the cancellation among the Euclidean 
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Associated contribution Vertex 

Ill 

A I f  
V I  

c .  P 
Figure 1. Feynman rules for Zv,L.  

volume divergence of vertex IV with other graphs coming from the g: correction to 
the gauge field propagator. The symmetrisation here avoided will be analysed in a 
forthcoming paper where we will calculate the whole gauge-field propagator up to 
order gi. 

Note that these Feynman rules are different from those considered by Alfaro, for 
instance, in [7], (see also [SI). In their case, the fictitious time was integrated between 
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0 and a finite value, while in our approach it is integrated between -a and +a, 
allowing us to go over to Fourier space in the artificial time also. 

5.3. Power counting and superJicial degree of divergence 

We use the Feynman rules associated with all vertices corresponding to 2". We 
consider a general graph with ni vertices of type i ( = I ,  11, 111, V and VI), L integrals 
over pairs ( p ,  w ) ,  i.e. over independent interval momenta and frequencies, I internal 
lines and E external legs. For each integration over an internal momentum a factor 
Ad is obtained, A being a momentum ultraviolet cut-off so that we end up with ALd. 
The integrals over frequencies produce a A-2L factor. The remaining I- L propagators 
yield a factor A4(L-'). On the other hand, the ni vertices give at most an overall factor 
A'", ( i  = I ,  II) ,  A3"4 (i  = 111). A"! ( i  = V), and the vertex VI is A independent, as can 
be seen in figure 1. So, finally, the degree of divergence 6 is at most S =  

tion theory of the considered graph. We have not considered vertices corresponding 
to i = I V ,  containing 'Euclidean volume' divergences because they can be shown to 
disappear for any d (not only for d = 4 )  through an interesting cancellation mechanism 
which involves other Feynman diagrams for Zy, as will be seen in 0 6. 

It may be easily seen that in d = 4 the degree of divergence S is independent of 
the order n of the graph considered, so that the theory is naively or superficially 
renormalisable in d = 4. The previously obtained formula for S should be supplemented 
with two additional and interesting results. First, let us suppose that 6 = 4 does occur, 
in fact, for a particular graph (as, will be the case for graphs ( a ) ,  (6)  and ( c )  in figure 
2. It turns out that this divergence degree is reduced to, at least, S = 2 ,  either by 

(in -I * E  + l ) d  - 2n + E + 2, where n = 2n, + 2n2 + n3 + 3n5 + 4n, is the order in perturba- 

b .  , - c  
V - P;R P 

( d l  

k ,  w 

( e  1 

Figure 2. Quartically divergent graphs. 



On the stochastic quantisation of Yang- Mills field theory 743 

cancellations with other graphs or by appealling to dimensional regularisation, as will 
be seen in § 6 .  Second, and as we will show in a forthcoming paper, this quadratic 
divergence ( 6  = 2 )  is reduced to a logarithmic one by means of, for instance, dimensional 
regularisation techniques [ 191. 

6. Cancellation of quartic ultraviolet divergences 

For d = 4, the vertices represented in figure 1 give rise, as has been announced above, 
to quartic ultraviolet divergences in general. 

The graphs which, up to order gi, are quartically divergent are represented in figure 
2.  We will compute the amputated graphs, i.e. without their external legs. Notice that 
the 'Euclidean volume' divergence of order gi has to be included, since it can also be 
viewed as a quartic ultraviolet divergence for d = 4. As we are going to see, the quartic 
divergence due to graph ( a )  cancels exactly the one arising from (c) while the other 
two (i.e. ( b )  and ( d ) )  also cancel with each other. We stress that the cancellations to 
be presented below are not restricted to d = 4  but are, in fact, valid for any d. 

By using the Feynman rules for Zv given in figure 1 ,  it is straightforward to obtain 

-2kp6,,+ ku6,.][ (1 - ~ ) k , . 6 , p , - 2 k p ~ 6 , , , +  k,6,.,. 1 . 
The factor 2 comes from the permutation of the external legs, i.e. the interchange 

of the indices ( p ,  c ) - ( p ' ,  c') which gives rise to a similar graph. 
We now need to compute the graph (c )  in order to see the cancellation. Notice 

that, a priori, the Feynman rules for Zv look a bit complicated since they involve 
frequency dependences at vertices of types I1 and I11 of figure 1 .  Nevertheless, it turns 
out that these rules allow for a simpler calculation of graph (c) in figure 2, since in 
that case the denominators can be reduced due to the following remarkable formula: 

[ ( w 2  + Y i  9) a0 6 Ir,, + y?ik2k,.,k,( 1 - $) ] [ ( - iw + yok2)6, ,  - yok,k, 

( iw + y o k 2 ) S , , , , -  yok,,kut 

( U ' +  y ~ ( k 2 ) 2 ) S , , . .  

By using the Feynman rules for Zv and the last formula ( 6 . 2 )  we obtain 

where the factor 2 comes from the permutation of the external lines, i.e. of the indices 
( p ,  c ) +  ( p ' ,  c'). It is now easy to see that the sum of graphs ( c )  (equation ( 6 . 3 ) )  and 
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( a )  (equation ( 6 . 1 ) )  gives rise to a vanishing result. In order to complete the cancellation 
we need the well known result 

ddk 
F(kz)k,ky =% (2n)d F(k2)  

where F (  k2) is an arbitrary function of kZ. 
There are four different ways in which graph (6) may be constructed: two of them 

are equal to each other, and the other two, which are also equal, are the complex 
conjugates of the first ones. Using this and (6 .4)  we find 

(6 .5)  

By computing the graph ( d )  now the following result is obtained which clearly 

2 eab ear ddk (6)=-?OgOf f 5 ( 2 . r r ) d  ( 6 @ p - 1 ) 6 u p .  

cancels the last one ( 6 . 5 ) :  

(6 .6)  2 edb edc ( d l  ( d )  = 2tyogof f 8 (0)(8,, - 1)6”,. 

The last type of cancellation between (6)  and ( d )  is the same as that we found in 
a previous work on the dynamics of the Ginzburg-Landau theory [ 1 6 ]  (see also [13 ,  
1 5 1 ) .  It is characterised by the fact that it is a. independent (gauge independent). On 
the other hand, the first cancellation between ( a )  and (c )  seems to be an intrinsic 
feature of gauge theory as the gauge parameter a. is involved in it. Finally, graph ( e )  
in figure 2 can be seen to vanish. It is straightforward to obtain from (6 .2)  

=(  - i w +  y:k2/a0)8.,,. 

+ y o ( l  - l / ao )k , , k , , [ (  -io+ yOk2)( - i w +  y O k 2 / a o ) ] - ’  

E K.,,.(k, w ) .  ( 6 . 7 )  
Using this expression we may write 

(6 .8)  

where the factor 2 comes from symmetry reasons as before. This expression vanishes 
since, in the complex w plane, the integrand has four simple poles, and all of them 
have positive imaginary part. We could have used dimensional regularisation arguments 
to get rid of the above quartic divergences, but we have preferred to show that they 
cancel completely. 

x [ ( ~ - ~ ) ( p + k ) . 6 , ~ , ~ - 2 ( p + k ) , ~ 6 , , . ~ + ( p + k ~ , ~ 6 , . . ~  1 
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As a general rule, graphs from the Zv rules which contain closed loops like ( b )  in 
figure 2 may safely be omitted, for any perturbative order in g o ,  since they can be 
cancelled when added to a similar graph in which the loop has been substituted by 
the Euclidean volume divergence represented by ( d )  in figure 2 .  A similar cancellation 
among Zv graphs which contain a closed loop (with an internal line with two crosses 
that starts and ends at the same point) like ( a )  in figure 2 and a loop like that in 
diagram (c) in figure 2 (where there are two circles over the same line and similarly 
two crosses over the other line) occurs for any perturbative order in go. 

7. Conclusions 

We have extended previous works on non-equilibrium statistical mechanics to the 
subject of stochastic quantisation of continuum non-Abelian YM gauge field theory. 
New functional integrals for the non-equilibrium and equilibrium probability distribu- 
tions are given. In particular, the functional integral for the equilibrium distribution 
(see equation (3.4)) is manifestly non-negative for any gauge field A; and it may 
provide an interesting alternative with respect to the Faddeev-Popov distribution. We 
introduce a new dynamical generating function (4.2) related to the Fokker-Planck or, 
equivalently, the Langevin equations. 

On the other hand, equation (4.2) is the generalisation for the YM theory of a 
stochastic function for critical dynamics given in [15] in which auxiliary fields, like 
the ones introduced by Martin et a1 [18] appear. It is possible and, we believe, 
advantageous, to integrate out the latter and write expression (4.2) as the starting point. 
This dynamical generating function is shown to reduce to the equilibrium generating 
function (4.1) (studied previously in [ 12]), in an appropriate ‘static limit’. We also 
provide representations for the correlation functions as functional derivatives. In 0 5 ,  
we give the Feynman rules associated with the generating function which include 
Euclidean volume divergences. As a check, the dynamical propagator is shown to 
reduce in the ‘static limit’ to the Euclidean free propagator in the Faddeev-Popov 
procedure. 

The Feynman rules are used in § 5 to show that the superficial degree of divergence 
of the diagrams does not grow with the perturbative order if d ~ 4 .  In 9 6, the 
cancellation of all Euclidean volume divergences is carried out for any dimension d 
for 2”. We show that the latter cancels with some of the quartic ultraviolet divergences 
for d = 4. 

We stress that it is possible, without resorting to dimensional regularisation argu- 
ments, to show the complete cancellation of all quartically divergent graphs. 

In forthcoming papers, we will study the renormalisation aspects of the presented 
method [19]. 
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